

UNIVERSITY
OF BERN

X-ray microtomography 485018-HS2024-0: Advanced Course II Ultraprecision Engineering

David Haberthür Institute of Anatomy, September 25, 2024

$oldsymbol{u}^{\scriptscriptstyle b}$ Grüessech mitenang!

- David Haberthür
 - Physicist by trade
 - PhD in high resolution imaging of the lung, Institute of Anatomy, University of Bern, Switzerland
 - Post-Doc I: TOMCAT, Swiss Light Source, Paul Scherrer Institute, Switzerland
 - Post-Doc II: μCT group, Institute of Anatomy, University of Bern, Switzerland

Grüessech from the µCT group

David.Haberthuer@unibe.ch Ruslan.Hlushchuk@unibe.ch Oleksiy.Khoma@unibe.ch

$u^{\scriptscriptstyle b}$ μ CT-group

- microangioCT [1]
 - Angiogenesis: heart, musculature [2] and bones
 - Vasculature: (mouse) brain [3], (human) nerve scaffolds [4], (human) skin flaps [5] and tumors
- Zebrafish musculature and gills [6]
- (Lung) tumor detection and metastasis classification [7]
- Collaborations with museums [8] and scientist at UniBe [9] to scan a wide range of specimens
- Automate all the things! [10, 11]

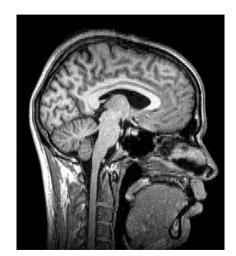
bruker.com/skyscan1272

$u^{\scriptscriptstyle b}$ Contents

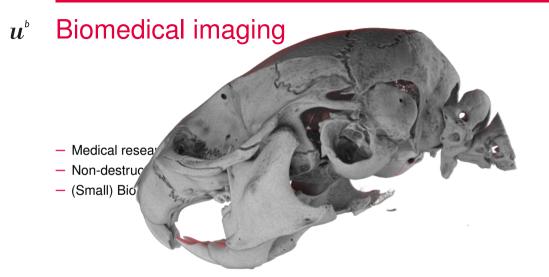
Overview & Imaging methods

Tomography
History
Interaction of x-rays with matter
Tomography today

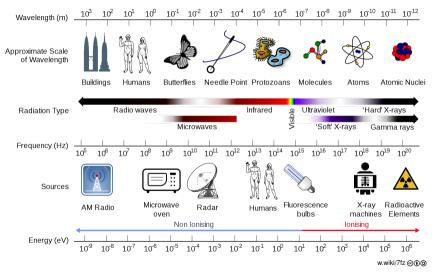
A scan, from getting started to nice image

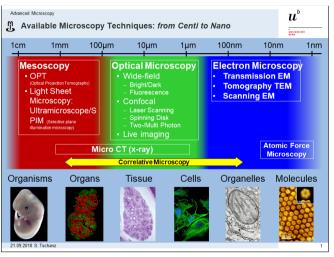

Examples

A study about teeth Overview Materials & Methods Results Metal foam analysis A study on fish $oldsymbol{u}^{\scriptscriptstyle b}$ $oldsymbol{\mathsf{\mu}}\mathsf{C}\mathsf{T}$


- Dense and/or non-transparent samples
- Calibrated & isotropic 3D images at micron resolutions
- Covers a very large range of sample sizes
- Gives information at different length scales
- Nondestructive imaging, thus compatible with routine sample preparation.
 Enables correlative imaging pipelines, scanning of museum & collection material

$u^{\scriptscriptstyle b}$ Biomedical imaging


- Medical research
- Non-destructive insights into the samples
- (Small) Biological samples


w.wiki/7g4 ⊚⊕⊚

Wavelengths & Scales

u^b Wavelengths & Scales

Stefan Tschanz, with permission

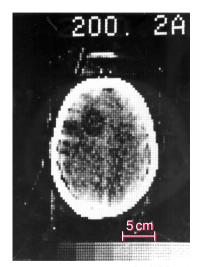
$oldsymbol{u}^{\scriptscriptstyle b}$ Imaging methods

- Light (sheet) microscopy: see lecture of Nadia Mercader Huber
- X-ray imaging
- Electron microscopy
 - Analytical electron microscopy by Dimitri
 - SEM Grundlagen by Sabine Kässmeyer and Ivana Jaric
 - Cryoelectron Microscopy & Serial Block Face SEM by Ioan

u^b CT-Scanner

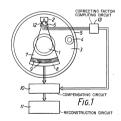
youtu.be/2CWpZKuy-NE

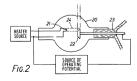
u^b CT History


- 1895: Wilhelm Conrad Röntgen discovers X-rays

w.wiki/BHAN @

CT History

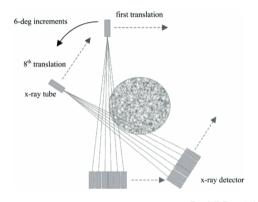

- 1895: Wilhelm Conrad Röntgen discovers X-rays
- 1963: Cormack used a collimated ⁶⁰Co. source and a Geiger counter as a detector [12]
- 1976: Hounsfield worked on first clinical scanner [13]



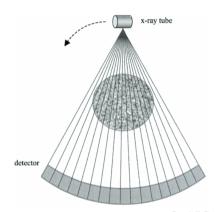
From [14], Figure 5

U.S. Patent Feb. 24, 1976 Sheet 1 of 2 3,940,625


- 1895: Wilhelm Conrad Röntgen discovers X-rays
- 1963: Cormack used a collimated ⁶⁰Co source and a Geiger counter as a detector [12]
- 1976: Hounsfield worked on first clinical scanner [13]
- Nobel Prize in 1979, jointly for Allan Cormack and Godfrey Hounsfield


From [US3940625A], p. 2

- 1895: Wilhelm Conrad Röntgen discovers X-rays
- 1963: Cormack used a collimated ⁶⁰Co source and a Geiger counter as a detector [12]
- 1976: Hounsfield worked on first clinical scanner [13]
- Nobel Prize in 1979, jointly for Allan Cormack and Godfrey Hounsfield
- CT scanner generations
 - First generation


From [15], Figure 1.12

- 1895: Wilhelm Conrad Röntgen discovers X-rays
- 1963: Cormack used a collimated ⁶⁰Co source and a Geiger counter as a detector [12]
- 1976: Hounsfield worked on first clinical scanner [13]
- Nobel Prize in 1979, jointly for Allan Cormack and Godfrey Hounsfield
- CT scanner generations
 - First generation
 - Second generation

From [15], Figure 1.13

- 1895: Wilhelm Conrad Röntgen discovers X-rays
- 1963: Cormack used a collimated ⁶⁰Co source and a Geiger counter as a detector [12]
- 1976: Hounsfield worked on first clinical scanner [13]
- Nobel Prize in 1979, jointly for Allan Cormack and Godfrey Hounsfield
- CT scanner generations
 - First generation
 - Second generation
 - Third generation

From [15], Figure 1.14

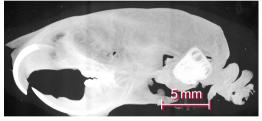
$u^{\scriptscriptstyle b}$ $\,$ μ CT History I

- X-ray computed tomography began to replace analog focal plane tomography in the early 1970s [Lin2019]
- Non-medical use in the late 1970s, for detection of internal defects in fabricated parts and equipment
- Lee Feldkamp [16] developed an early laboratory microCT system by assembling a
 micro-focus cone beam x-ray source, specimen holder and stagers, and an image
 intensifier at Ford Motor Company's Scientific Research Laboratory to nondestructively
 detect damage in ceramic manufactured automobile parts
- Feldkamp met with scientists at Henry Ford Hospital and University of Michigan interested in understanding the relationship between the microstructure and biomechanical function of trabecular bone to study osteoporotic fractures [Feldkamp1983]

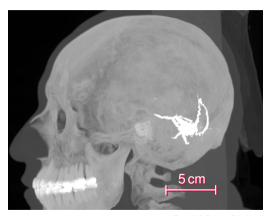
$oldsymbol{u}^{\scriptscriptstyle b}$ μCT History II

- $-\mu CT$ was first reported in the 1980s, for scanning gemstones
- Early 1990s: Manufacturers like SkyScan and Scanco Medical made μCT systems commercially available
- Today: Nondestructive imaging for quantifying the (micro)structure of (organic) materials
 - Mineralized bone tissue and the relationships between the mechanical behavior of bone to its structural and compositional properties
 - Teeth and their internal details
 - Tissues, small animals, and medical devices like stents and implants
 - Soft tissues and vasculature using radio-opaque contrast agents
 - Characterization of anatomical details in high resolution
- \approx 2500 μ CT systems are in use worldwide with over 1000 publications annually


u^b X-ray interaction

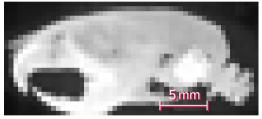

- "X-rays interact with tissue in 2 main ways: photoelectric effect and Compton scatter. To a first approximation, the photoelectric effect contributes to contrast while the Compton effect contributes to noise. Both contribute to dose." ([19])
 - Photoelectric absorption (τ) is strongly dependent on the atomic number Z of the absorbing material: $\tau \propto \frac{Z^4}{E^{3.5}}$
 - Compton scattering is one of the principle forms of photon interaction and is directly proportional to the (electron & physical) density of the material. It does *not* depend on the atomic number: $\lambda' \lambda = \frac{h}{m_e c} \left(1 \cos \theta\right)$
- Lowering x-ray energy increases contrast
- X-ray penetration decreases exponentially with sample thickness [20, i. e. Beer-Lamberts law]: $I(t)=I_0\,e^{-\alpha z}$

$oldsymbol{u}^{\scriptscriptstyle b}$ Composition of biological tissues

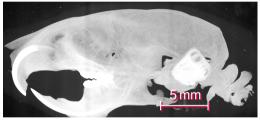

Tissue: content by mass percentage

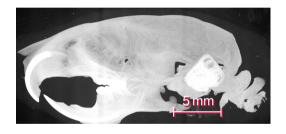
Element Atomic number	H 1	C 6	N 7	O 8	Na 11	P 15	S 16	CI 17	K 19	Ca 20
Fat	11.4	59.8	0.7	27.8	0.1		0.1	0.1		
Water	11.2			88.8						
Blood	10.2	11	3.3	74.5	0.1	0.1	0.2	0.3	0.2	
Liver	10.2	13.9	3	71.6	0.3	0.2	0.3	0.2	0.3	
Brain	10.7	14.5	2.2	71.2	0.2	0.4	0.2	0.3	0.3	
Bone	3.4	15.5	4.2	43.5	0.1	10.3	0.3			22.5

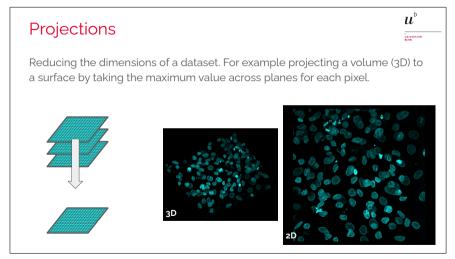



From [21], Subject C3L-02465




From [21], Subject C3L-02465


From [21], Subject C3L-02465



From [21], Subject C3L-02465

$u^{\scriptscriptstyle b}$ Maximum intensity projection

Handout for git.io/fipP7, created on 2024-12-23 09:14

Fundamentals of Digital Image Processing (2022) by Guillaume Witz, Slide 23

$u^{\scriptscriptstyle b}$ Machinery

- Hospital CT
 - Voxel size around 0.5 mm
- Lab/Desktop CT
 - Voxel size around 7 μm (in vivo)
 - Voxel size around 0.5 μm (ex vivo)
- Synchrotron CT
 - Voxel size down to 160 nm

flic.kr/p/D4rbom @⊕®@

Machinery

- Hospital CT
 - Voxel size around 0.5 mm
- Lab/Desktop CT
 - Voxel size around 7 μm (in vivo)
 - Voxel size around 0.5 µm (ex vivo)
- Synchrotron CT
 - Voxel size down to 160 nm

flic.kr/p/fpTrGu @⊕@

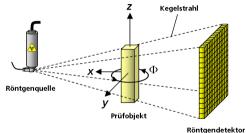
$u^{\scriptscriptstyle b}$ Machinery

- Hospital CT
 - Voxel size around 0.5 mm
- Lab/Desktop CT
 - Voxel size around 7 μm (in vivo)
 - Voxel size around 0.5 µm (ex vivo)
- Synchrotron CT
 - Voxel size down to 160 nm

bruker.com/skyscan1272

$u^{\scriptscriptstyle b}$ Machinery

- Hospital CT
 - Voxel size around 0.5 mm
- Lab/Desktop CT
 - Voxel size around 7 μm (in vivo)
 - Voxel size around 0.5 μm (ex vivo)
- Synchrotron CT
 - Voxel size down to 160 nm



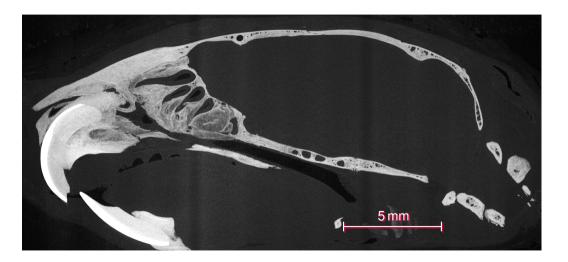
flic.kr/p/7Xhk2Y ⊚⊕⊛

$u^{\scriptscriptstyle b}$ What is happening?

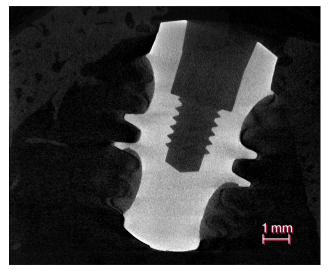
No matter what kind of machine, the basic principle is always

- an x-ray source
- a sample
- a detector

(hier: Flachbilddetektor)

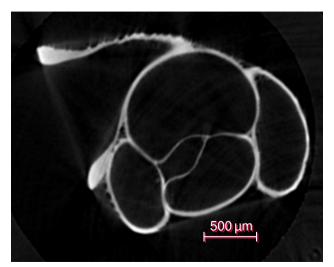

w.wiki/7g3 @@@

w.wiki//gs @@@

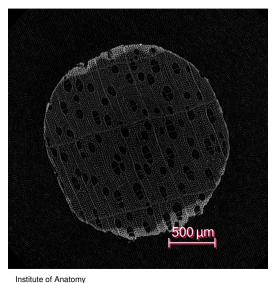

u^b Machinery

Handout for git.io/fipP7, created on 2024-12-23 09:14

u^b Examples



u^b Examples

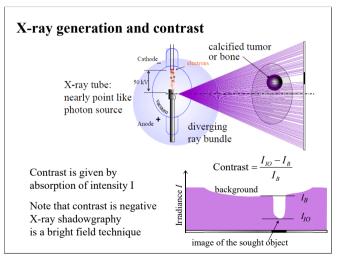

Institute of Anatomy
Handout for git.io/fipP7, created on 2024-12-23 09:14

Examples

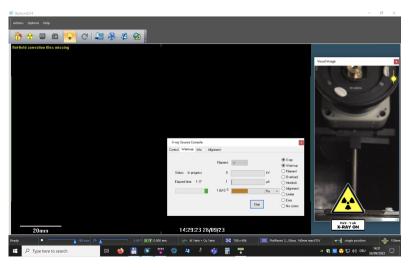
From [8], Diancta phoenīx

Examples

Handout for git.io/fipP7, created on 2024-12-23 09:14


u^b Examples

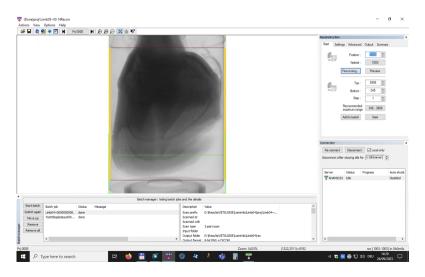
$oldsymbol{u}^{\scriptscriptstyle b}$ Preparation

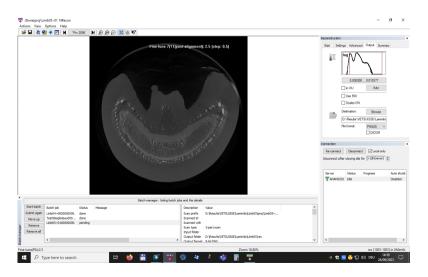

- Study design
- Sample preparation

u^b Projections

Contrast, Magnification and Resolution-Laws of Physics for Microscopists (1, 2022) by Martin Frenz, Slide 21

Projection acquisition


u^b Projections


$u^{\scriptscriptstyle b}$ Projections

- A (micro-focus) x-ray source illuminates the object
- The x-rays penetrate the sample and are attenuated
- A scintillator converts the x-rays to visible light
- A (planar) x-ray detector collects (magnified) projection images.
- The projections are recorded on disk

Reconstructions

u^b Reconstructions

u^b Reconstructions

u^b Reconstructions

- Based on hundreds of angular views acquired while the object rotates, a computer synthesizes a stack of virtual cross section slices through the object.
- Radon Transformation
- Filtered back projection
- Cone beam reconstruction [16]
- Corrections (beam hardening, etc.)
- Writing to stack

 $u^{\scriptscriptstyle b}$ Visualization

u^b Visualization

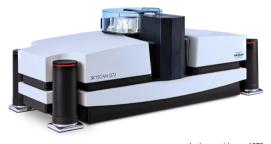
 Based the on reconstructions, a computer synthesizes a three-dimensional view of the scanned sample

What to use?

- ImageJ/Fiji [22]
- Also see Fundamentals of Digital Image Processing by Guillaume Witz
- Reproducible research
 - ♣ in Jupyter [23]
 - git
 - Script all your things!
 - Data repositories; i. e. sharing is caring!

Quantitative data

- Pretty images are nice to have, but science is quantitative data
- Segmentation
- Characterization


Internal morphology of human teeth

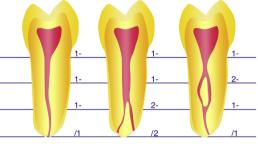
- 104 extracted human permanent mandibular canines
- μCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e.g. you can click a button to double-check or recalculate the results yourself!

- 104 extracted human permanent mandibular canines
- μCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e.g. you can click a button to double-check or recalculate the results yourself!

bruker.com/skyscan1272

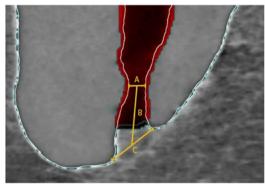
- 104 extracted human permanent mandibular canines
- µCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e. g. you can click a button to double-check or recalculate the results yourself!

```
Scanner=SkyScan1272
Instrument S/N=15G09089-B
Software Version=1.1.19
Filename Prefix=Tooth045~00
Number Of Files= 482
Number Of Rows = 1092
Number Of Columns = 1632
Source Voltage (kV)=
Source Current (uA)= 125
Image Pixel Size (um)=9.999986
Exposure (ms) = 950
Rotation Step (deg)=0.400
Frame Averaging=ON (3)
Filter=Al 1mm
Study Date and Time = 02 Jul 2020
08h:23m:34s
Scan duration=0h:39m:51s
```


How?

- 104 extracted human permanent mandibular canines
- uCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e.g. you can _ 326 GB data as input for analysis click a button to double-check or recalculate the results vourself!

Sample changer on the SkyScan 1272 In total:

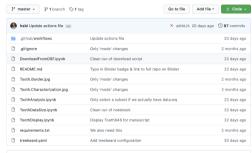

- 13 days of continuous µCT scanning
- 819 GB of raw data 230 648 TIFF projections
- 282 062 PNG reconstructions

- 104 extracted human permanent mandibular canines
- μCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e.g. you can click a button to double-check or recalculate the results yourself!

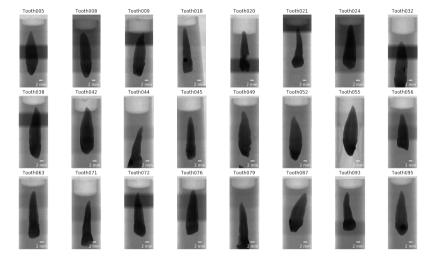

From [25], Fig. 2

- 104 extracted human permanent mandibular canines
- μCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e.g. you can click a button to double-check or recalculate the results yourself!

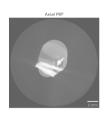
From [27], Fig. 1


- 104 extracted human permanent mandibular canines
- µCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e. g. you can click a button to double-check or recalculate the results yourself!

gph.is/2nqkple


$oldsymbol{u}^{\scriptscriptstyle b}$ How?

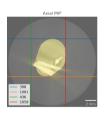
- 104 extracted human permanent mandibular canines
- μCT imaging
- Root canal configuration, according to Briseño-Marroquín et al. [25]
- Reproducible analysis [26], e.g. you can click a button to double-check or recalculate the results yourself!


μ^{b} µCT imaging

Dataset cropping

Full datasets: 326 GB

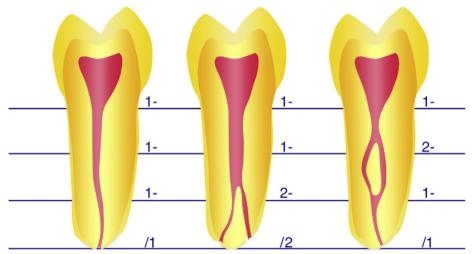
Cropped datasets: 115 GB



$\mu^{\scriptscriptstyle b}$ Dataset cropping

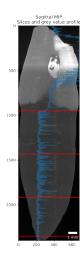
- Full datasets: 326 GB

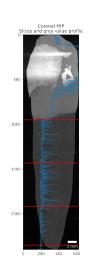
- Cropped datasets: 115 GB

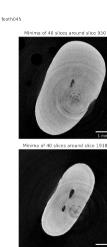


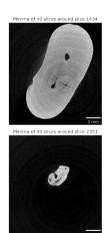
u^b Tooth morphology

Tooth morphology

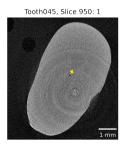


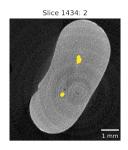

From [25], Fig. 2

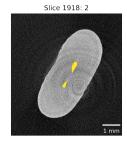

L^b Tooth morphology

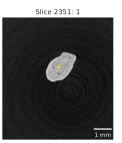


$\mu^{\scriptscriptstyle b}$ Detection of enamel-dentin border





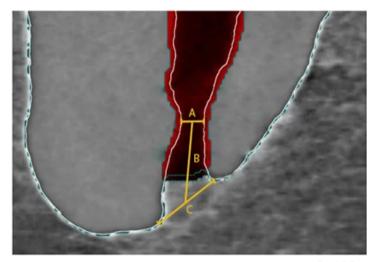



$oldsymbol{u}^{\scriptscriptstyle b}$ Detection of enamel-dentin border

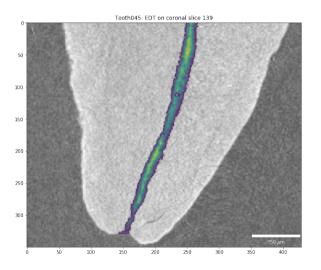
Tooth045

$u^{\scriptscriptstyle b}$ Classification of root canal configurations

Roots		RCC	#	%
Single (N=98)		1-1-1/1	73	74.5
		1-1-1/2	14	14.3
		1-1-1/3	1	1.0
		1-1-1/4	2	2.1
		1-1-2/1	1	1.0
		1-2-1/1	4	4.1
		1-2-1/2	1	1.0
		1-2-2/2	1	1.0
		2-3-1/1	1	1.0
Double (N=3)	Buccal	1-1-1/1	2	66.6
		1-2-1/1	1	33.3
	Lingual	1-1-1/1	2	66.6
		1-1-1/2	1	33.3

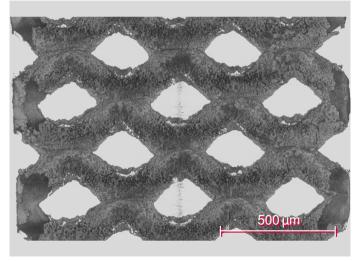

u^b Extraction of root canal space

Results of root canal space extraction



$u^{\scriptscriptstyle b}$ Physiological foramen geometry

From [27], Fig. 1


$u^{\scriptscriptstyle b}$ Physiological foramen geometry

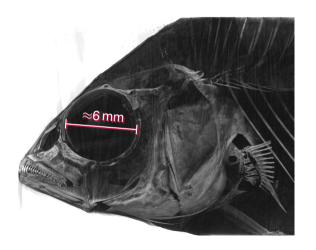
u^b Conclusion ZMK

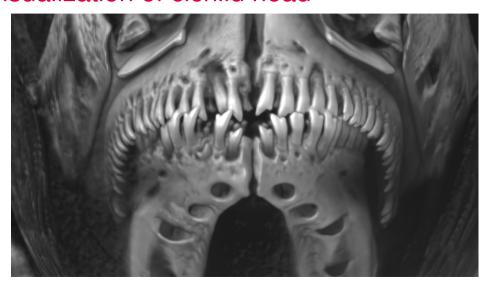
- Efficient use of time, e.g. more teeth does not mean more (human) work
- Reproducible analysis with free and open-source software, usable by anyone
- Objective analysis, e.g. no operator bias

Metal foam

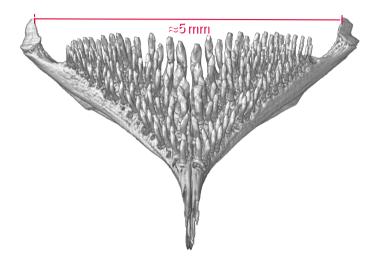
$oldsymbol{u}^{\scriptscriptstyle b}$ Data wrangling by example: Cichlids

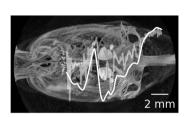
Collaboration with team of *Aquatic Ecology & Evolution*, from the Institute of Ecology and Evolution^a₁

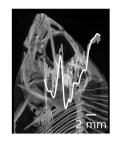

- 133 Cichlids from Lake Victoria, East Africa
 - Functional anatomy of the skulls and jaws
 - 6-18 cm in size
- 375 scans in total
 - Voxelsizes from 3.5–50 μm
 - 46 days of scanning time
 - 9.8 TB of raw data
 - 1.5 TB/+1 000 000 reconstructions



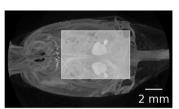
^a11.

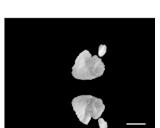

u^{b} Visualization of cichlid head

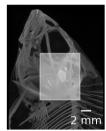

t^b Visualization of cichlid head



Visualization of segmented pharyngeal jaw


u^{\flat} Data wrangling by example: Cichlids





Data wrangling by example: Cichlids

u⁵ Thanks!

- Thanks for listening to me!
- What questions do you have for me?

v. 13cdd67f

$u^{\scriptscriptstyle b}$ Colophon

- This BEAMER presentation was crafted in LaTeX with the (slightly adapted) template from Corporate Design und Vorlagen of the University of Bern.
 - Complete source code: git.io/fjpP7
 - The LaTeX code is automatically compiled with a GitHub action to a (handout) PDF which you can access here: git.io/JeQxO
- Did you spot an error?
 - File an issue: git.io/fjpPb
 - Submit a pull request: git.io/fjpPN
 - Send me an email: david.haberthuer@unibe.ch

$oldsymbol{u}^{\scriptscriptstyle b}$ References I

- [1] Ruslan Hlushchuk et al. "Cutting-Edge Microangio-CT: New Dimensions in Vascular Imaging and Kidney Morphometry". In: (Mar. 2018). DOI: 10.1152/ajprenal.00099.2017.
- [2] Henry Nording et al. "The C5a/C5a Receptor 1 Axis Controls Tissue Neovascularization through CXCL4 Release from Platelets". In: (Dec. 2021). DOI: 10.1038/s41467-021-23499-w.
- [3] Ruslan Hlushchuk et al. "Innovative High-Resolution microCT Imaging of Animal Brain Vasculature". In: (Oct. 2020). DOI: 10.1007/s00429-020-02158-8.
- [4] Tsering Wüthrich et al. "Development of Vascularized Nerve Scaffold Using Perfusion-Decellularization and Recellularization". In: (Aug. 2020). DOI: 10.1016/j.msec.2020.111311.
- [5] Cédric Zubler et al. "The Anatomical Reliability of the Superficial Circumflex Iliac Artery Perforator (SCIP) Flap". In: (Mar. 2021). DOI: 10.1016/j.aanat.2020.151624.
- [6] Matthias Messerli et al. "Adaptation Mechanism of the Adult Zebrafish Respiratory Organ to Endurance Training". In: (Feb. 2020). DOI: 10.1371/journal.pone.0228333.
- [7] Verdiana Trappetti et al. "Synchrotron Microbeam Radiotherapy for the Treatment of Lung Carcinoma: A Pre-Clinical Study". In: (Aug. 2021). DOI: 10.1016/j.ijrobp.2021.07.1717.
- [8] Estée Bochud et al. "A New Diancta Species of the Family Diplommatinidae (Cyclophoroidea) from Vanua Levu Island, Fiji". In: (Nov. 2021). DOI: 10.3897/zookeys.1073.73241.

$u^{\scriptscriptstyle b}$ References II

- [9] Sebastian Halm et al. "Micro-CT Imaging of Thiel-embalmed and Iodine-Stained Human Temporal Bone for 3D Modeling". In: (2021). DOI: 10.1186/s40463-021-00522-0.
- [10] David Haberthür et al. "Automated Segmentation and Description of the Internal Morphology of Human Permanent Teeth by Means of Micro-CT". In: (Apr. 2021). DOI: gjpw2d.
- [11] David Haberthür et al. "Microtomographic Investigation of a Large Corpus of Cichlids". In: (Sept. 2023).

 DOI: gsst8t.
- [12] A. M. Cormack. "Representation of a Function by Its Line Integrals, with Some Radiological Applications". In: (Sept. 1963), DOI: 10.1063/1.1729798.
- [13] Godfrey Newbold Hounsfield. "Historical Notes on Computerized Axial Tomography.". In: (1976).
- [14] E C Beckmann. "CT Scanning the Early Days.". In: (Jan. 2006). DOI: 10.1259/bjr/29444122.
- [15] J Hsieh. Computed Tomography: Principles, Design, Artifacts, and Recent Advances. Society of Photo Optical, 2003.
- [16] L. A. Feldkamp et al. "Practical Cone-Beam Algorithm". In: (June 1984). DOI: 10.1364/JDSAA.1.000612.
- [17] L. A. Feldkamp et al. "The Direct Examination of Three-Dimensional Bone Architecture in Vitro by Computed Tomography". In: (Feb. 1989). DOI: 10.1002/jbmr.5650040103.
- [18] M. W. Layton et al. "Examination of Subchondral Bone Architecture in Experimental Osteoarthritis by Microscopic Computed Axial Tomography". In: (Nov. 1988). DOI: 10.1002/art.1780311109.

September 25, 2024

References III

- [19] Mark Hammer, X-Ray Physics: X-Ray Interaction with Matter, X-Ray Contrast, and Dose.
- [20] Wikipedia contributors. Beer-Lambert Law — Wikipedia, The Free Encyclopedia. 2019.
- [21] Kenneth Clark et al. "The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository". In: (Dec. 2013), DOI: 10.1007/s10278-013-9622-7.
- Johannes Schindelin et al. "Fiji: An Open-Source Platform for Biological-Image Analysis". In: (July 2012). [22] DOI: 10.1038/nmeth.2019.
- Thomas Kluvver et al. "Jupyter Notebooks a Publishing Format for Reproducible Computational [23] Workflows". In: (2016). DOI: 10.3233/978-1-61499-649-1-87.
- [24] Thomas Gerhard Wolf et al. "Internal Morphology of 101 Mandibular Canines of a Swiss-German Population by Means of Micro-CT: An Ex Vivo Study". In: (2021), DOI: g7r8.
- [25] Benjamín Briseño-Marroquín et al. "Root Canal Morphology and Configuration of 179 Maxillary First Molars by Means of Micro-Computed Tomography: An Ex Vivo Study", In: (Dec. 2015), DOI: 10.1016/j.joen.2015.09.007.
- [26] David Haberthür. "Habi/Zmk-Tooth-Cohort: Used for Manuscript about Method". In: (Aug. 2020). DOI: 10.5281/ZENODO.3999402.

Handout for git.io/fipP7, created on 2024-12-23 09:14

[27] Thomas Gerhard Wolf et al. "Three-Dimensional Analysis of the Physiological Foramen Geometry of Maxillary and Mandibular Molars by Means of Micro-CT". In: (Sept. 2017). DOI: 10.1038/ijos.2017.29.